

High Frequency of Atopy with geographic variation in non-cystic fibrosis bronchiectasis

Pei Yee Tiew¹⁻², Michéal Mac Aogáin¹, Albert Yick Hou Lim³, Teck Boon Low⁴, Gan Liang Tan², Tidi Maharani Hassan⁷, Sze Lei Pang⁶, Zi Yang Lee⁶, Xiao Wei Gwee⁶, Christopher Martinus⁶, Yang Yie Sio⁶, Sri Anusha Matta⁶, Thun How Ong^{2,5}, Holly R. Keir⁸, Mariko Siyue Koh^{2,5}, John Abisheganaden³, James D. Chalmers⁸, Fook Tim Chew⁶, Sanjay Haresh Chotirmall¹

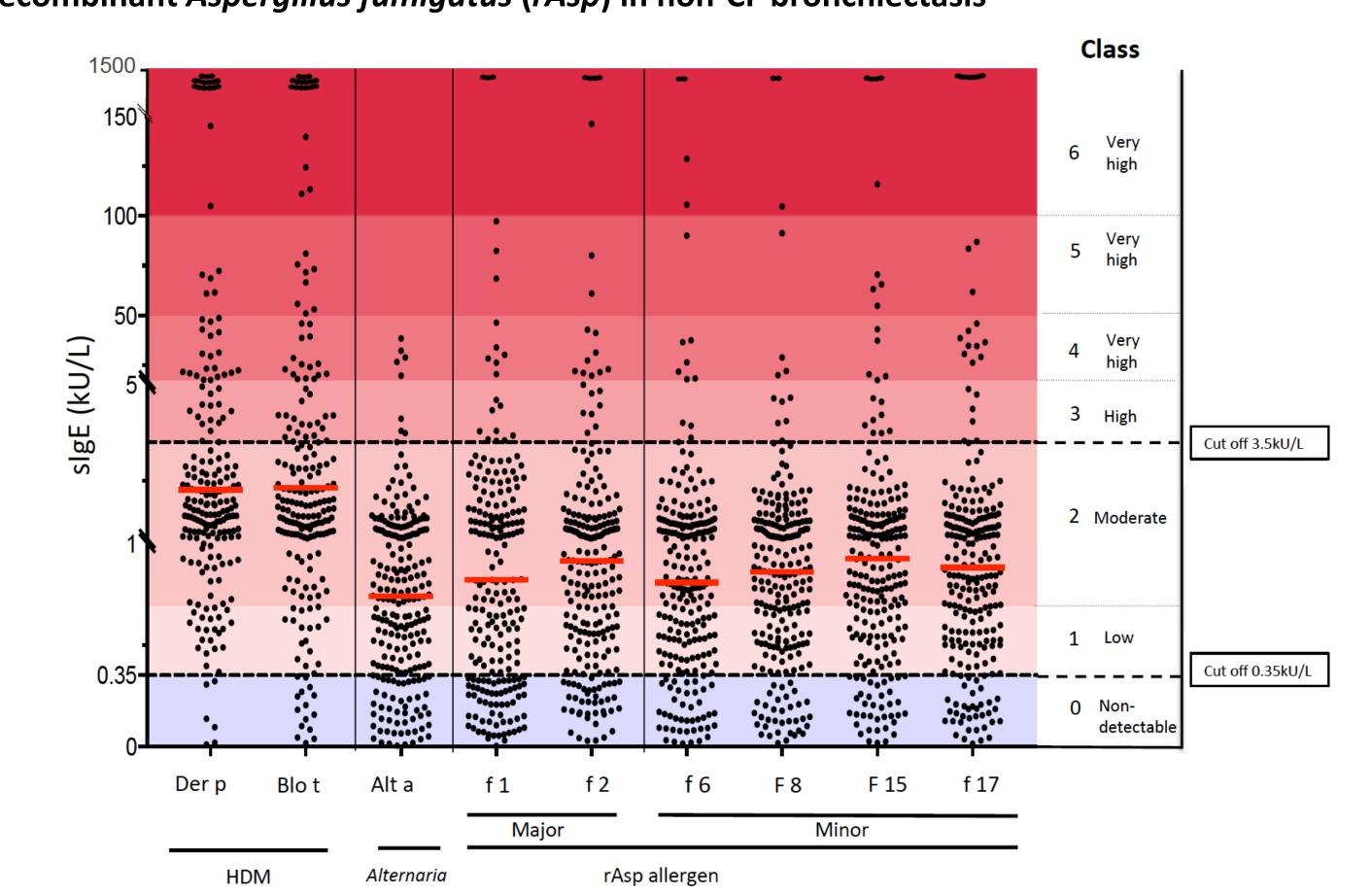
¹Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, ²Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, ³Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, ⁴Department of Respiratory and Critical Care Medicine, Changi General Hospital, ⁵Duke-NUS Graduate Medical School, Singapore, ⁶Department of Biological Sciences, National University Singapore, ⁷Universiti Kebangsaan Malaysia, Kuala Lumpur ⁸University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland.

Introduction

 Atopy and sensitization in respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) are associated with poorer lung function and worse clinical outcomes¹⁻⁴. The role of atopy in non-CF bronchiectasis remains unexplored.

Aim

• We aim to determine the presence of atopy in two independent and geographically diverse cohorts of patients with non-CF bronchiectasis.


Methods

- 138 stable bronchiectasis patients
 across three different hospitals in
 Singapore (Singapore General Hospital,
 Changi General Hospital and Tan Tock
 Seng Hospital) and a single hospital in
 Malaysia (UKM, Medical Centre) were
 matched with 100 stable
 bronchiectasis patients from Ninewells
 Hospital, Dundee, United Kingdom.
- The cohorts were matched on age, gender and disease severity according to the Bronchiectasis Severity Index (BSI).
- Serum specific IgE (sIgE) titre against major inhalant allergen sources, including those from house dust mite (Dermatophagoides pteronyssinus [Der p], Blomia tropicalis [Blo t]), Alternaria alternata (Alt a), and recombinant Aspergillus fumigatus allergens (rAsp f) 1, 2 (major allergens), 6, 8, 15 and 17 (minor allergens), were measured and correlated with clinical outcomes, disease severity and pulmonary function.

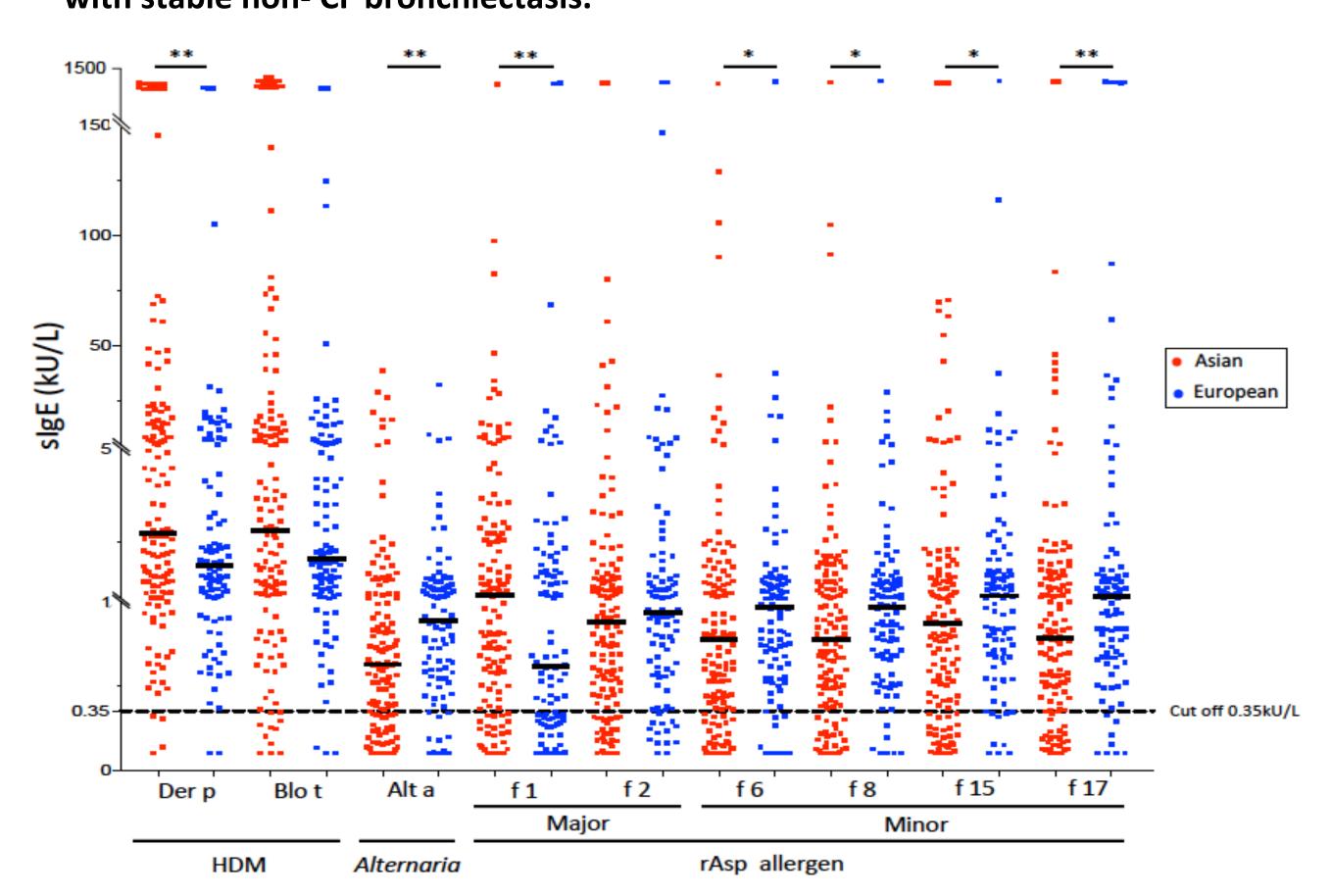

			Matched cohorts				
Characteristic	Non-CF Bronchiectasis	Asian Bronchiectasis	Asian	European			
	(n=238)	(n=138)	(n=100)	(n=100)			
Age : median (IQR)	68 (64-71)	65 (58-73)	65 (58-74)	69 (64-76)			
(01)							
Gender : n (%) Female	130 (55%)	77 (55%)	59 (59%)	53 (53%)			
Male	108 (45%)	61 (45%)	41 (41%)	47 (47%)			
		(3.11)	(11)	(
Etiology n (%)							
Idiopathic	145 (61%)	85 (62%)	63 (63%)	60 (60%)			
Post-infection Other	56 (23.5%)	43 (31%)	27 (27%)	27 (27%) 12 (12%)			
Other	37 (15.5%)	10 (7%)	10 (10%)	13 (13%)			
BSI status : n (%)							
Severe	147 (62%)	84 (61%)	63 (63%)	63 (63%)			
Moderate	71 (30%)	45 (33%)	26 (26%)	26 (26%)			
Mild	20 (8%)	9 (6%)	11 (11%)	11 (11%)			
BSI score : median (IQR)	9 (6-13)	10 (7-14)	10 (7-14)	9 (6-12)			
BMI (kg/m2) : median (IQR)	21 (18-27)	19 (17-22)	19 (17-22)	27 (22-31)			
Divir (kg/m²/) . mealan (ran)	21 (10 27)	15 (17 22)	13 (17 22)	27 (22 31)			
MRC dyspnea score : n (%)							
1-3	200 (84%)	121 (88%)	90 (90%)	79 (79%)			
4 5	26 (11%) 12 (5%)	10 (7%) 7 (5%)	6 (6%) 4 (4%)	16 (16%) 5 (5%)			
5	12 (3%)	7 (370)	4 (470)	3 (370)			
FEV ₁ % predicted	73.6(54-87)	69 (51-84)	68.5(52-84)	75.7(56.6-95.6)			
Radiological severity : n (%)							
1-2 lobes involved	106 (45%)	62 (45%)	43 (43%)	44 (44%)			
3 or more lobes involved	132 (55%)	76 (55%)	57 (57%)	56 (56%)			
No. of exacerbations in previous year: n (%)							
0	84 (35%)	69 (50%)	44 (44%)	15 (15%)			
1-2	82 (35%)	51 (37%)	41 (41%)	31 (31%)			
3 or more	72 (30%)	18 (13%)	15 (15%)	54 (54%)			
Hospital admissions before study : n (%)							
Yes	88 (37%)	63 (46%)	43 (43%)	25 (25%)			
No	150 (63%)	75 (54%)	57 (57%)	75 (75%)			
Colonization with other organisms: n (%)							
Yes	127 (53%)	60 (43%)	44 (44%)	67 (67%)			
No	111 (47%)	78 (57%)	56 (56%)	33 (33%)			
Pseudomonas colonisation : n (%)							
Yes	23 (10%)	18 (13%)	15 (15%)	5 (5%)			
No	215 (90%)	120 (87%)	85 (85%) 	95 (95%) 			

Table 1: Demographics of stable bronchiectasis patients comprising Asian and European matched cohorts

Figure 1: High frequencies of sensitization to specific allergens of house dust mite (HDM), and recombinant *Aspergillus fumigatus* (*rAsp*) in non-CF bronchiectasis

Figure 2: Differing pattern of sensitization between Asian and European patients with stable non- CF bronchiectasis.

Definition of abbreviation: Der p= Dermatophagoides pteronyssinus, Blo t= Blomia tropicalis; Alt a = Alternaria alternata, rAsp= recombinant Aspergillus fumigatus, sIgE= Specific immunoglobulin E, * p \leq 0.05, **p \leq 0.01.

Results

Table 2: slgE titer and associations with clinical outcomes.

Allergen		Asian	European		Median FEV ₁						1	Median Ex	acerba	tions	_	sABPA n (%)												
					Asian		European		Asian			European		Asian			European			Effect on clinical								
				sIgE	class	p-value	sIgE class		p-value	sIgE class		p-value	sIgE	sIgE class	p-value	sIgE class		p-value	sIgE class		p-value	outcome						
				< 3	≥3	p-value	< 3	≥3	p-value	<3	≥3	< 3	≥3	p-value	<3	≥3	p-value	< 3	≥3	p-varue								
House dust mite	Der p	**		76	61	0.039*	76.7	72.3	0.473	1	1	0.925	3	3	0.468	10 (13%)	12 (19%)	0.484	15 (21%)	6 (21%)	1	Decreased FEV ₁ in						
nouse uns	и ппие	Blo t	<u> </u>	тт	тт	тт	тт	тт	1	75	61	0.04*	77.5	74.8	0.40	0	1	0.908	3	3	0.86	8 (12%)	14 (26%)	0.059	11 (18%)	10 (26%)	0.323	Asians
Alterna	ria	Alt a	^	ተተ	68	84	0.305	76.2	64.7	0.468	1	1	0.777	3	5	0.138	19 (15%)	3 (33%)	0.382	19 (20%)	2 (33%)	0.603	-					
Aspergillus	Major	rAsp fl	↑ ↑	•	69	62	0.16	76.7	55.2	0.028*	1	0	0.407	3	1.5	0.394	17 (16%)	5 (17%)	0.782	19 (22%)	2 (17%)	1	Decreased FEV ₁ in Europeans					
		rAsp f2	^	1	69	66	0.484	76.7	66.9	0.174	0	1	0.617	3	3	0.463	17 (14%)	5 (31%)	0.137	16 (19%)	5 (36%)	0.164						
	Minor	rAsp f6	^	ተተ	70	57	0.485	76.2	66.9	0.647	0	1	0.144	3	3.5	0.464	18 (14%)	4 (31%)	0.223	19 (21%)	2 (25%)	0.673	-					
		rAsp f8	^	ተተ	70	56	0.182	76.2	75.2	0.927	0	1.5	0.308	3	1	0.423	18 (14%)	4 (40%)	0.054	20 (22%)	1 (10%)	0.684						
		rAsp f15	^	ተተ	70	57	0.124	76.2	75.2	0.525	0	1	0.205	3	2	0.729	15 (13%)	7 (33%)	0.045*	16 (19%)	5 (36%)	0.164						
		rAsp f17	7	**	69	65	0.834	77.5	68.9	0.162	0	1.5	0.035*	3	3	0.802	16 (13%)	6 (43%)	0.011*	16 (1006)	9 (4706)	0.008**	Increased exacerbations in Asians					
					09	03	0.034	11.3	00.9	0.162	"	1.5	0.035						0.011	16 (19%)	0 (4/90)	0.008	Increased in sABPA					

↑ elevated sIgE titer, ↑↑ markedly elevated sIgE titer

Conclusion

- High frequencies of clinically significant (≥Class 3) atopy were detected in non-CF bronchiectasis, demonstrating geographic variation.
- Future work should address specific mechanisms driving this phenomenon.

References

- 1. Warner JO, Taylor BW, Norman AP, Soothill JF. Association of cystic fibrosis with allergy. *Arch Dis Child* 1976; 51: 507-511.
- 2. Wang J, Visness CM, Calatroni A, Gergen PJ, Mitchell HE, Sampson HA. Effect of environmental allergen sensitization on asthma morbidity in inner-city asthmatic children. *Clin Exp Allergy* 2009; 39: 1381-1389.
- 3. Jamieson DB, Matsui EC, Belli A, McCormack MC, Peng E, Pierre-Louis S, Curtin-Brosnan J, Breysse PN, Diette GB, Hansel NN. Effects of allergic phenotype on respiratory symptoms and exacerbations in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2013; 188: 187-192.

Funding

This research is supported by the Singapore Ministry of Health's National Medical Research Council under its Transition Award (NMRC/TA/0048/2016) (S.H.C) and the Changi General Hospital Research Grant (CHF2016.03-P) (T.B.L). C.F.T. has received research support from the Singapore Ministry of Education Academic Research Fund, the Singapore Immunology Network, and the Biomedical Research Council (BMRC) (N-154-000-038-001, R-154-000-404-112, R-154-000-553-112, R-154-000-565-112, R-154-000-630-112, R-154-000-A08-592, R-154-000-A27-597, SIgN-06-006, SIgN-08-020, BMRC/01/1/21/18/077, BMRC/04/1/21/19/315).