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Abstract
High-level resistance and treatment failures with ceftriaxone and azithromycin, the first-line agents for gonorrhoea treatment are
reported and antimicrobial-resistant Neisseria gonorrhoeae is an urgent public health threat. Our aims were to determine
antimicrobial resistance rates, resistance determinants and phylogeny of N. gonorrhoeae in Ireland, 2014–2016. Overall, 609
isolates from four University Hospitals were tested for susceptibility to extended-spectrum cephalosporins (ESCs) and
azithromycin by theMIC Test Strips. Forty-three isolates were whole-genome sequenced based on elevatedMICs. The resistance
rate to ceftriaxone, cefixime, cefotaxime and azithromycin was 0, 1, 2.1 and 19%, respectively. Seven high-level azithromycin-
resistant (HLAzi-R) isolates were identified, all susceptible to ceftriaxone. Mosaic penA alleles XXXIV, X and non-mosaic XIII,
andG120K plus A121N/D/G (PorB1b), H105Y (MtrR) and A deletion (mtrR promoter) mutations, were associatedwith elevated
ESCMICs. A2059G and C2611Tmutations in 23S rRNAwere associated with HLAzi-R and azithromycinMICs of 4–32mg/L,
respectively. The 43 whole-genome sequenced isolates belonged to 31 NG-MAST STs. All HLAzi-R isolates belonged toMLST
ST1580 and some clonal clustering was observed; however, the isolates differed significantly from the published HLAzi-R
isolates from the ongoing UK outbreak. There is good correlation between previously described genetic antimicrobial resistance
determinants and phenotypic susceptibility categories for ESCs and azithromycin in N. gonorrhoeae. This work highlights the
advantages and potential of whole-genome sequencing to be applied at scale in the surveillance of antibiotic resistant strains ofN.
gonorrhoeae, both locally and internationally.

Keywords Neisseria gonorrhoeae . Ireland . Resistance determinants . MLST . NG-MAST . High-level azithromycin-resistant
Neisseria gonorrhoeae

Introduction

Gonorrhoea is one of the most prevalent sexually transmitted
infections (STIs) globally, with an estimated 78 million cases
of gonorrhoea in 15–49-year-olds in 2012 [1, 2]. The
aetiological agent Neisseria gonorrhoeae causes both urogen-
ital infections, mostly urethritis and cervicitis, and extragenital
infections such as pharyngeal and rectal infections, and may
result in severe complications such as ectopic pregnancy, in-
fertility and increased HIV transmission [3, 4].

Gonococci have developed resistance to all first-line anti-
microbials recommended for treatment of gonorrhoea since
penicillin was introduced in the 1940s [5]. Antimicrobial-
resistant N. gonorrhoeae is now an urgent public health threat
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globally [1, 5–8]. Increasing resistance to and treatment fail-
ures with cefixime in the last decade lead to the introduction of
dual therapy, mainly ceftriaxone 250–500 mg and
azithromycin 1–2 g, in an attempt to avoid treatment failure,
and most importantly to prevent development of resistance
and/or spread of resistant strains [1, 8, 9]. However, resistance,
including high-level resistance, has been reported to both cef-
triaxone and azithromycin. High-level ceftriaxone resistance
(MIC ≥ 2mg/L) has been identified in four sporadic isolates in
Japan, France and Spain [10–12]. High-level azithromycin-
resistant (HLAzi-R) isolates (MIC ≥ 256 mg/L) have been
identified in many countries worldwide, including Ireland
[13–18]. Alternative treatment options will undoubtedly be
necessary in the near future. Enhanced understanding of the
national and international emergence and transmission of
antimicrobial-resistant N. gonorrhoeae strains is a priority.
Whole-genome sequencing (WGS) provides an ideal solution
for microepidemiology, macroepidemiology and identifica-
tion of molecular antimicrobial resistance determinants [19].

The aims of this study were to determine the rates of resis-
tance to extended-spectrum cephalosporins (ESCs) and
azithromycin among gonococci in Ireland, to identify antimi-
crobial resistance determinants and determine the molecular
epidemiology using WGS in the most antimicrobial-resistant
subset of isolates, including assessing relatedness of HLAzi-R
isolates from Ireland and the UK.

Materials and methods

Sample collection and identification

N. gonorrhoeae isolates were collected from four University
Hospitals in Ireland (East, South East, West and Midlands),
with the majority of isolates (84.4%) originating from Dublin
(East). Isolates from all clinical samples which had been pro-
spectively collected at St. James’s Hospital (SJH) (2014–
2016) and stored on Microbank cryobeads at − 70 °C were
recovered for testing. Clinical isolates retrieved from or re-
ferred to SJH by other tertiary referral or regional hospitals
in Ireland were also examined. A total of 609 isolates were
recovered from being frozen: 513 (84.4%) from East, 39
(6.4%) from South East, 31 (5.1%) from West, and 26
(4.3%) from Midlands. Ninety isolates were not viable, and
the majority of which were from 2014. The majority of iso-
lates, 329 (53.9%) were collected in 2016, followed by 166
(27.2%) from 2015 and 95 (15.6%) from 2014. Isolates were
cultured on chocolate agar prior to confirmation of N.
gonorrhoeae (Gram-stained microscopy and MALDI-ToF
mass spectrometry), antimicrobial susceptibility testing and
DNA extraction. Fifteen additional isolates, sequenced previ-
ously as part of a different study, were also included in the
phylogenetic analysis for this chapter [13, 20].

Antimicrobial susceptibility testing

MICs (mg/L) of ceftriaxone, cefixime, cefotaxime,
azithromycin and ertapenem were determined using MIC
Test Strips (Liofilchem Roseto degli Abruzzi, Italy), accord-
ing to manufacturer’s instructions. Quality control was per-
formed using the N. gonorrhoeae reference strain ATCC
49226. EUCAST clinical breakpoints [21] were used to cate-
gorise isolates as resistant (susceptible): ceftriaxone/cefixime/
cefotaxime MIC > 0.125 mg/L (MIC ≤ 0.125 mg/L) and
azithromycin MIC > 0.5 mg (MIC ≤ 0.25 mg/L). No resis-
tance breakpoints are published by any organisation for
ertapenem, but the EUCAST epidemiological cut-off value
(ECOFF) is 0.064 mg/L [22].

DNA extraction

Forty-three isolates (7.0%) were selected for WGS based on
showing decreased susceptibility or resistance to ESCs and/or
resistance or high-level resistance to azithromycin (MIC ≥
256 mg/L). DNA extraction was performed using QIAamp
DNAMini Kit (Qiagen, Hilden, Germany) according to man-
ufacturer’s instructions. The purified DNAwas preserved at −
80 °C prior to WGS.

Whole-genome sequencing

Sequencing libraries of N. gonorrhoeae genomic DNA were
generated using the NexteraXT library preparation kit
(Illumina, Eindhoven, the Netherlands), according to manu-
facturer’s instructions, and sequenced on an Illumina MiSeq
instrument at the TrinSeq sequencing lab (Trinity College
Dublin) usingMiSeq v3 reagents. All short-read data obtained
in this study has been deposited in the Sequence Read Archive
(SRA); project accession number PRJNA473385.

Read mapping and phylogenetic analysis

Delineation of N. gonorrhoeae isolate phylogeny was
achieved by read mapping to the N. gonorrhoeae WHO ref-
erence genome WHO N (LT591910.1) and subsequent anal-
ysis of core single nucleotide polymorphisms (SNPs) identi-
fied using the variant calling tool Snippy (https://github.com/
tseemann/snippy). Genome alignments were generated and
masked for recombination using Gubbins (https://github.
com/sanger-pathogens/gubbins) and a subsequent
maximum-likelihood phylogenetic tree was constructed using
the generalised time reversible (GTR) substitution model in
PhyML [23, 24]. A pairwise comparison table comparing total
SNP differences between each isolate pair was generated
using a custom python script (‘vcf-to-pairwise-distance2.
py’). To reproduce the described phylogenetic analysis, a
Docker image has been made available at the following link:

Eur J Clin Microbiol Infect Dis

https://github.com/tseemann/snippy
https://github.com/tseemann/snippy
https://github.com/sanger-pathogens/gubbins
https://github.com/sanger-pathogens/gubbins


https://hub.docker.com/r/nsilico/tree-service/. The code to
make this image is available here: https://github.com/
blawlor/snippygubbins.

Bioinformatic analysis of antimicrobial resistance
determinants

De novo genome assembly was performed using the DTU
centre for genomic epidemiology 2.1 assembler pipeline
(http://www.genomicepidemiology.org/), which implements
the SPAdes genome assembly algorithm [25]. Using genome
assembly data, penA alleles were assigned a genotype based
on the NG-STAR database [26]. The pubMLST tool was
employed to determine MLST type and detect antimicrobial
resistance determinants (https://pubmlst.org/neisseria/) while
additional AMR genes were identified by cross-reference of
the ARG-ANNOT database, which contains additional data
on AMR (e.g. ereA, ereB, ermA, ermB, ermC, mphA, mphB,
mphC, mefC) and plasmid associated genes reported in this
study [26, 27]. As there are four copies of the rrl (23S rRNA)
gene within the N. gonorrhoeae genome, reference mapping
was performed separately and the number of reads supporting
mutations such as the A to G mutations at position 2059 was
rounded to the nearest quartile and reported as an estimate of
overall allele prevalence within the genome. Finally, a local
blast search was performed on de novo assemblies to deter-
mine NG-MAST types [28].

Ethics approval

The research proposal was reviewed and approved by the
SJH/AMNCH Research and Ethics Committee.

Results

Five-hundred and sixteen isolates (84.6%) originated from
STI clinics and only 36 (5.9%) from general practice (GP).
The remaining isolates were referred from other hospitals (n =
45), emergency department (n = 1), surgical team (n = 1), oph-
thalmology (n = 3), and the source was unknown for 7 iso-
lates. Over 90% (n = 553) of isolates were from male patients.
The median age was 26 years (mean 28) with a range of 3 to
75 years. Over half the isolates (52.5%, n = 320, of which 35
were female) were from genital sites (urethral/cervical),
followed by rectal (26.6%, n = 162, of which 1 was female)
and pharyngeal (15.7%, n = 96, of which 5 were female).

No resistance to ceftriaxone was identified, but 1.8% of
isolates (n = 11) displayed decreased susceptibility to ceftriax-
one (MIC > 0.032 mg/L, CRO-DS), 1% (n = 6) were resistant
to cefixime (CFM-R), and 2.1% (n = 13) resistant to cefotax-
ime (CTX-R). A further 2.5% (n = 15) displayed decreased
susceptibility to cefixime (MIC = 0.125 mg/L, CFM-DS)

and 7.6% (n = 46) displayed decreased susceptibility to cefo-
taxime (MIC = 0.125 mg/L, CTX-DS). TheMIC50 andMIC90

of cefotaxime were also higher than corresponding measures
for ceftriaxone and cefixime (Table 1).

Forty-four percent of gonococci (n = 268) were non-
susceptible to azithromycin (MIC > 0.25 mg/L), including 7
(1.1%) isolates with high-level resistance (MIC > 256 mg/L),
18 (3%) with medium-level resistance (MICs 4–32 mg/L), 88
(14.4%) with low-level resistance (MICs from 1–2 mg/L) and
155 (25.5%) with intermediate susceptibility.

Of the 43 isolates (7%), whole-genome sequenced, 25
belonged to one or more of the following phenotypic groups:
CRO-DS (CRO MIC > 0.032 mg/L, n = 9), CFM-R (CFM
MIC > 0.125 mg/L, n = 6), CFM-DS (CFM MIC =
0.125 mg/L, n = 14), CTX-R (CTX MIC > 0.125 mg/L, n =
13) and CTX-DS (CTX MIC = 0.125 mg/L, n = 11). The re-
maining 18 isolates hadMICs lower than the above groups but
were included based onMICs of azithromycin. The 25 isolates
with resistance or decreased susceptibility to ESCs were asso-
ciated with mosaic penA alleles (80%, n = 20) while none
(0%) of the 18 isolates showing susceptibility to all ESCs
had a mosaic penA allele. The majority (n = 6) of the nine
CRO-DS isolates carried the mosaic penA XXXIV allele
(n = 6), while the remainder had mosaic penA X (n = 1) or
non-mosaic penA XIII (n = 2), containing the A501V muta-
tion, alleles. The majority of CFM-DS/R and CTX-R/DS iso-
lates also had these three penA allele types: of 14 CFM-DS
isolates, 13 were mosaic XXXIVand 1 was non-mosaic XIII;
of 6 CFM-R isolates, 5 weremosaic XXXIVand 1wasmosaic
X; of 13 CTX-R isolates, 11 were mosaic XXXIV, 1 was
mosaic X and 1 non-mosaic XIII; and of 11 CTX-DS isolates,
7 were mosaic XXXIV and 1 was non-mosaic XIII. The 18
isolates with lower ESC MICs contained mainly non-mosaic
penA II, XIV, XIX, XLIVand XLIX. Additional antimicrobial
resistance determinants, NG-MAST STs andMLST STs of all
isolates are summarised in Table 2.

All HLAzi-R (MIC > 256 mg/L) isolates had the character-
istic A2059G mutation in 2–4 alleles of the 23S rRNA gene,
i.e. two mutated alleles in one isolate, three in two isolates and
all four alleles mutated in four isolates. All seven HLAzi-R
isolates also had an azithromycin resistance mutation in mtrR

Table 1 MIC50, MIC90 and MIC ranges for five antimicrobials when
examining Irish Neisseria gonorrhoeae isolates (n = 609) from 2014 to
2016

Antimicrobial MIC50 MIC90 MIC range

Ceftriaxone 0.008 mg/L 0.016 mg/L ≤ 0.002–0.125 mg/L

Cefixime 0.016 mg/L 0.032 mg/L ≤ 0.016–0.25 mg/L

Cefotaxime 0.032 mg/L 0.064 mg/L ≤ 0.002–0.5 mg/L

Ertapenem 0.016 mg/L 0.032 mg/L ≤ 0.002–0.094 mg/L

Azithromycin 0.025 mg/L 1 mg/L ≤ 0.016– > 256 mg/L

Eur J Clin Microbiol Infect Dis

https://hub.docker.com/r/nsilico/tree-service/
https://github.com/blawlor/snippygubbins
https://github.com/blawlor/snippygubbins
http://www.genomicepidemiology.org
https://pubmlst.org/neisseria


Ta
bl
e
2

Su
m
m
ar
y
of

M
IC
s,
N
G
-M

A
ST

S
Ts
,M

L
S
T
ST

s
an
d
an
tim

ic
ro
bi
al
re
si
st
an
ce

de
te
rm

in
an
ts
fo
r
th
e
43

se
qu
en
ce
d
is
ol
at
es

Is
ol
at
e
(y
ea
r)

N
G
-

M
A
ST

M
L
ST

M
IC

(m
g/
L
)

PE
N

C
IP

A
Z
M

C
R
O

C
F
M

T
E
T

C
T
X

E
T
P

C
N

G
E
M
I

SP
C

FO
S

00
6
(2
01
3)

24
75

15
80

0.
25

0.
01
2

>
25
6

0.
01
6

0.
01
6

1
0.
03
2

0.
01
2

4
0.
00
6

8
16

18
17
98

(2
01
5)

33
11

15
80

0.
25

0.
00
8

>
25
6

0.
00
8

0.
02
3

0.
75

0.
04
7

0.
02
3

4
0.
00
6

8
24

19
67
12

(2
01
6)

64
9

15
80

0.
25

0.
00
8

>
25
6

0.
00
8

0.
01
6

0.
75

0.
12
5

0.
02
3

6
0.
00
6

16
12

17
84
87

(2
01
5)

64
9

15
80

0.
19

0.
00
8

>
25
6

0.
00
6

0.
02
3

0.
5

0.
04
7

0.
03
2

4
0.
00
4

6
12

19
38
52

(2
01
6)

14
43

15
80

0.
12
5

≤
0.
00
2

>
25
6

0.
00
4

≤
0.
01
6

0.
38

0.
00
6

0.
02
3

4
≤
0.
00
2

8
8

19
98
56

(2
01
6)

64
9

15
80

0.
12
5

0.
00
4

>
25
6

0.
00
2

≤
0.
01
6

0.
38

0.
00
4

0.
00
8

3
<
0.
00
2

8
8

19
15
87

(2
01
6)

33
11

15
80

0.
25

0.
00
8

>
25
6

0.
00
8

0.
03
2

1
0.
06
4

0.
01
6

3
0.
00
4

8
12

67
81
8
(2
01
4)

24
00

15
87

0.
19

>
32

6
0.
01
2

0.
02
3

0.
38

0.
06
4

0.
01
2

3
1.
5

8
8

19
04
40

(2
01
6)

37
50

15
88

4
>
32

0.
03
2

0.
00
4

0.
01
6

32
0.
03
2

0.
01
2

4
4

4
12

42
01
32

(2
01
6)

N
M

13
14
4

>
32

2
0.
06
4

0.
00
8

≤
0.
01
6

0.
5

0.
00
8

0.
01
2

8
0.
5

12
12

71
32
4
(2
01
4)

15
82

15
88

4
>
32

0.
12
5

0.
04
7

0.
19

24
0.
19

0.
09
4

0.
5

3
6

6
01
6
(2
01
3)

11
64
5

19
01

2
>
32

1
0.
04
7

0.
19

1
0.
25

0.
03
2

6
1.
5

12
32

03
5
(2
01
6)

N
M

19
01

0.
75

>
32

1
0.
04
7

0.
12
5

0.
75

0.
12
5

0.
03
2

4
1.
5

6
24

28
60
88

(2
01
4)

38
06

19
01

0.
75

>
32

0.
38

0.
02
3

0.
09
4

1
0.
19

0.
03
2

6
0.
75

16
24

76
97
2
(2
01
4)

34
31

19
01

1.
5

>
32

0.
75

0.
04
7

0.
19

1
0.
25

0.
03
2

4
2

12
32

17
65
61

(2
01
5)

49
36

19
01

0.
75

>
32

0.
5

0.
01
6

0.
12
5

0.
5

0.
19

0.
03
2

6
1.
5

8
12

50
13
73

(2
01
6)

56
22

19
01

0.
25

16
0.
5

0.
03
2

0.
12
5

1
0.
12
5

0.
02
3

6
2

8
32

02
4
(2
01
2)

14
07

19
01

1.
5

>
32

0.
38

0.
09
4

0.
25

1
0.
38

0.
06
4

4
1.
5

8
48

00
9
(2
01
3)

14
07

19
01

1
>
32

0.
75

0.
06
4

0.
12
5

1.
5

0.
12
5

0.
03
2

4
1.
5

12
48

19
46
98

(2
01
6)

14
07

19
01

0.
25

16
0.
5

0.
01
6

0.
06
4

0.
5

0.
19

0.
04
7

4
3

8
48

19
12
62

(2
01
6)

14
07

19
01

0.
5

>
32

0.
5

0.
02
3

0.
12
5

1
0.
12
5

0.
03
2

4
1.
5

8
24

42
26
71

(2
01
6)

31
58

19
01

0.
5

>
32

0.
5

0.
06
4

0.
12
5

2
0.
25

0.
06
4

4
2

16
12

17
95
01

(2
01
5)

11
69
0

19
01

0.
25

3
0.
25

0.
01
6

0.
09
4

0.
25

0.
09
4

0.
02
3

8
0.
75

8
12

42
21
02

(2
01
6)

31
58

19
01

1
32

1
0.
03
2

0.
12
5

1
0.
38

0.
03
2

8
2

16
32

81
51
3
(2
01
5)

22
12

19
01

0.
75

>
32

0.
5

0.
03
2

0.
19

0.
75

0.
12
5

0.
06
4

6
2

12
16

17
85
26

(2
01
5)

89
53

19
01

1
>
32

1
0.
03
2

0.
19

0.
75

0.
25

0.
03
2

6
1

8
16

68
93
1
(2
01
4)

38
06

19
01

1
>
32

0.
5

0.
03
2

0.
12
5

1
0.
25

0.
04
7

8
1.
5

12
12

42
52
04

(2
01
6)

N
M

73
59

0.
25

0.
01
6

0.
5

0.
01
6

0.
12
5

0.
12
5

0.
12
5

0.
03
2

4
0.
00
6

16
12

19
30
58

(2
01
6)

N
M

73
63

0.
12
5

8
0.
5

0.
00
8

0.
01
6

0.
38

0.
04
7

0.
01
6

6
12

6
8

19
77
47

(2
01
6)

14
44
9

73
63

0.
25

2
16

0.
01
6

0.
03
2

0.
5

0.
09
4

0.
01
2

4
2

12
8

42
56
57

(2
01
6)

91
84

73
63

0.
25

16
4

0.
01
6

0.
03
2

1
0.
01
2

0.
00
6

3
1.
5

8
16

17
75
74

(2
01
5)

23
18

13
14
3

1
8

0.
5

0.
04
7

0.
09
4

0.
5

0.
12
5

0.
01
6

3
1

8
16

16
86
28

(2
01
6)

23
18

78
27

1
2

0.
25

0.
06
4

0.
06
4

1
0.
25

0.
01
2

4
0.
38

12
8

42
23
22

(N
A
)

56
24

81
43

>
32

2
0.
5

0.
00
8

≤
0.
01
6

0.
5

0.
01
6

0.
00
4

8
0.
5

16
12

00
8
(2
01
3)

56
24

81
43

>
32

3
0.
5

0.
00
8

≤
0.
01
6

0.
5

0.
02
3

0.
00
6

6
0.
75

12
12

16
65
87

(2
01
6)

12
30
2

93
63

0.
25

4
8

0.
00
8

0.
01
6

0.
75

0.
12
5

0.
01
6

6
2

12
12

18
05
05

(2
01
5)

39
35

93
63

0.
5

0.
03
2

2
0.
01
2

0.
02
3

2
0.
06
4

0.
01
6

16
0.
01
2

12
24

17
85
75

(2
01
5)

29
92

93
63

0.
19

0.
00
4

32
0.
00
3

0.
01
6

0.
38

0.
01
2

0.
01
2

6
0.
00
3

6
16

41
27
7
(2
01
4)

29
92

93
63

0.
12
5

0.
00
4

12
0.
00
3

≤
0.
01
6

0.
25

0.
01
2

0.
00
8

4
0.
00
3

6
12

17
94
11

(2
01
5)

12
30
2

93
63

0.
5

12
4

0.
00
8

0.
02
3

0.
5

0.
06
4

0.
01
6

6
1

12
24

03
9
(2
01
5)

N
M

99
03

1.
5

4
0.
25

0.
01
2

0.
01
6

8
0.
01
6

0.
01
6

6
1.
5

8
96

82
43
2
(2
01
5)

78
67

13
14
2

0.
75

>
32

1
0.
02
3

0.
12
5

1
0.
25

0.
03
2

6
6

12
24

86
60
6
(2
01
5)

42
44

11
42
8

0.
25

0.
00
6

0.
5

0.
00
8

0.
09
4

0.
38

0.
06
4

0.
04
7

6
0.
00
4

8
24

Eur J Clin Microbiol Infect Dis



T
ab

le
2

(c
on
tin

ue
d)

Is
ol
at
e
(y
ea
r)

M
IC

(m
g/
L
)

pe
nA

po
nA

po
rB

T
E
M

gy
rA

pa
rC

m
tr
R

m
tr
R
pr
om

ot
er

te
tM

rp
ld

23
S
rR
N
A

B
L

Is
ol
at
e
(y
ea
r)

M
IC

(m
g/
L
)

pe
nA

po
nA

po
rB

T
E
M

gy
rA

pa
rC

m
tr
R

m
tr
R
pr
om

ot
er

te
tM

rp
ld

23
S
rR
N
A

B
L

00
6
(2
01
3)

–
N
on
-m

os
ai
c
ty
pe

II
W
T

A
12
1S

–
W
T

W
T

G
45
D

A
12
C

–
W
T

A
20
59
G
(4
/4
)

18
17
98

(2
01
5)

–
N
on
-m

os
ai
c
ty
pe

II
W
T

A
12
1S

–
W
T

W
T

G
45
D

W
T

–
W
T

A
20
59
G
(3
/4
)

19
67
12

(2
01
6)

–
N
on
-m

os
ai
c
ty
pe

II
W
T

A
12
1S

–
W
T

W
T

G
45
D

W
T

–
W
T

A
20
59
G
(4
/4
)

17
84
87

(2
01
5)

–
N
on
-m

os
ai
c
ty
pe

II
W
T

A
12
1S

–
W
T

W
T

G
45
D

W
T

–
W
T

A
20
59
G
(3
/4
)

19
38
52

(2
01
6)

–
N
on
-m

os
ai
c
ty
pe

II
W
T

A
12
1S

–
W
T

W
T

G
45
D

A
13

de
l

–
W
T

A
20
59
G
(2
/4
)

19
98
56

(2
01
6)

–
N
on
-m

os
ai
c
ty
pe

II
W
T

A
12
1S

–
W
T

W
T

G
45
D

W
T

–
W
T

A
20
59
G
(4
/4
)

19
15
87

(2
01
6)

–
N
on
-m

os
ai
c
ty
pe

II
W
T

A
12
1S

–
W
T

W
T

W
T

W
T

–
W
T

A
20
59
G
(4
/4
)

67
81
8
(2
01
4)

–
N
on
-m

os
ai
c
ty
pe

49
L
42
1P

G
12
0K

A
12
1D

–
S9

1F
D
95
G

E
91
G

W
T

A
13

de
l

–
W
T

C
26
11
T
(4
/4
)

19
04
40

(2
01
6)

+
N
on
-m

os
ai
c
ty
pe

X
IX

L
42
1P

G
12
0K

A
12
1G

T
E
M
-1
98

S9
1F

A
92
P
D
95
A

E
91
K

S8
7K

A
39
T

W
T

te
tM

W
T

W
T

42
01
32

(2
01
6)

+
N
on
-m

os
ai
c
ty
pe

II
W
T

W
T

T
E
M
-7
5

S9
1F

D
95
G

E
91
G

A
39
T

W
T

–
W
T

W
T

71
32
4
(2
01
4)

+
M
os
ai
c
ty
pe

X
L
42
1P

G
12
0K

A
12
1G

T
E
M
-1
98

S9
1F

D
95
A

E
91
K

S8
7K

A
39
T

W
T

te
tM

W
T

C
26
11
T
(1
/4
)

01
6
(2
01
3)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

03
5
(2
01
6)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

28
60
88

(2
01
4)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

76
97
2
(2
01
4)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

17
65
61

(2
01
5)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

50
13
73

(2
01
6)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
A

S8
7R

W
T

A
13

de
l

–
W
T

W
T

02
4
(2
01
2)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

00
9
(2
01
3)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

19
46
98

(2
01
6)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
G
71
D

W
T

19
12
62

(2
01
6)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

42
26
71

(2
01
6)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

17
95
01

(2
01
5)

–
M
os
ai
c
X
X
X
IV

L
42
1P

A
12
1S

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

42
21
02

(2
01
6)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

81
51
3
(2
01
5)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1D

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

17
85
26

(2
01
5)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

68
93
1
(2
01
4)

–
M
os
ai
c
X
X
X
IV

L
42
1P

G
12
0K

A
12
1N

–
S9

1F
D
95
G

S8
7R

W
T

A
13

de
l

–
W
T

W
T

42
52
04

(2
01
6)

–
M
os
ai
c
X
X
X
IV

W
T

W
T

–
W
T

W
T

W
T

W
T

–
W
T

W
T

19
30
58

(2
01
6)

–
N
on
-m

os
ai
c
ty
pe

44
L
42
1P

W
T

–
S9

1F
D
95
G

E
91
G
S8

7I
W
T

A
13

de
l

–
W
T

W
T

19
77
47

(2
01
6)

–
N
on
-m

os
ai
c
ty
pe

44
L
42
1P

W
T

–
S9

1F
D
95
G

E
91
G

W
T

A
13

de
l

–
W
T

C
26
11
T
(4
/4
)

Eur J Clin Microbiol Infect Dis



(G45D), and one of the isolates also had a single-base pair (A)
deletion in the repeated sequence of the mtrR promoter. All
seven HLAzi-R isolates were assigned as MLST ST1580.
Three of the HLAzi-R isolates belonged to NG-MAST
ST649, two were of NG-MAST ST3311 and the remaining
two were single NG-MAST ST2475 and ST1443 (Table 3).

The remaining isolates formed two groups based on
azithromycin MICs, those with azithromycin MICs ranging
from 4 to 32 mg/L (n = 7) and those with MICs ≤ 2 mg/L
(n = 29). Five of the seven isolates with medium-level resis-
tance to azithromycin (MIC 4–32 mg/L) had a C2611T muta-
tion in all four alleles of the 23S rRNA gene, and twowere wild
type (MIC = 4mg/L and 8 mg/L). These isolates were assigned
as MLST ST9363 (n = 4), ST 7363 (n = 2) and ST1587 (n = 1)
and NG-MAST ST2992 (n = 2), ST12302 (n = 2), ST2400
(n = 1), ST1449 (n = 1) and ST9184 (n = 1) (Table 4).

All isolates with azithromycin MICs < 2 mg/L (n = 29) had
wild-type 23S rRNA, except for one isolate which had a
C2611T mutation in one of the four 23S rRNA gene alleles
(azithromycin MIC = 0.125 mg/L). Sixteen of these 29 iso-
lates were MLST ST1901 with four of these isolates NG-
MAST ST1407. The second most common MLST ST was
ST1588 (n = 3).

A single-base pair (A) deletion in the repeated sequence of
themtrR promoter was present in 21/29 (72%), 4/7 (57%) and
1/7 (14%) of the isolates with azithromycin MICs of 0.032–
2 mg/L, 4–32 mg/L and > 256 mg/L, respectively. No erm,
ere, mef or mph genes were detected.

A phylogenetic tree based on the whole-genome sequence
data was constructed. Core SNP sites in 58 whole-genome
sequenced strains compared to the NCCP11945 genome were
used as the basis for delineating strain phylogeny (Fig. 1).

The phylogeny revealed that HLAzi-R isolates NGSJH11,
181798, 191587 and 178487 belonged to the same MLST ST
(ST1580) while differing by < 5 SNPs in their genome se-
quences (Fig. 1). This suggests potential linked transmission
sources or the recent emergence of ST1580 in Ireland, al-
though the latter is unlikely since it has circulated in Ireland
since at least 2008 possibly reflecting a very conserved ge-
nome [13]. NG-MAST STs in these seven HLAzi-R isolates
included ST649 (n = 3), ST3311 (n = 2), ST2475 (n = 1) and
ST1443 (n = 1). Isolates UHW24 and UH9 belonged to
MLST ST1901 and were genetically indistinguishable (0
SNP differences) pointing to a shared source of transmission,
while isolates 4226171 and 422102 (also belonging to
ST1901) were closely related to each other but differed by
166 SNPs from UHW24 and UH9. The MLST ST1901 was
also distinguished by decreased susceptibility to the ESCs.
Isolates exhibiting CFM-R (n = 5), CFM-DS (n = 10) and
CRO-DS (n = 6) were observed in this clade but no high-
level resistance to ESCs or azithromycin was found (Fig. 1).
Other MLST STs where potential transmission events were
supported included ST1587/ST7363 (isolates 67818 andT
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NGSJH12) and ST9363 (isolates: 178575/41277 and 166587/
179411) clades, where genetically related isolates were ob-
served while the two identified as ST7827 and ST13143 dif-
fered by only 11 SNPs.

The Irish HLAzi-R isolates (all MLST ST1580) identified
in the current study were also compared to HLAzi-R MLST
ST1580 isolates from an ongoing outbreak in the UK
(Sequence Read Archive accession PRJEB14933) to establish
potential international spread of HLAzi-R ST1580 strains
(Fig. 2). There was significant difference between these iso-
lates (> 100 SNP).

Discussion

Regular and quality-assured surveillance of gonococcal antimi-
crobial susceptibility is essential for empiric treatment guide-
lines. In Ireland, ESC resistance is currently not a significant

problem since all isolates in this study were susceptible to cef-
triaxone, and resistance to cefixime and cefotaxime was rela-
tively rare, i.e. 1 and 2.1%, respectively. Reports from the
European Gonococcal Antimicrobial Surveillance Programme
(EURO-GASP) have shown that in 2015, 1.7% of isolates were
cefixime resistant compared to 2.0% in 2014, while ceftriaxone
resistance was detected in only one (0.05%) isolate in 2015,
compared with five (0.2%) in 2014 [29, 30].

Azithromycin is part of the empiric first-line dual therapy
regimen (along with ceftriaxone) adopted by many countries
for treatment of uncomplicated anogenital or pharyngeal
gonorrhoea in adults [8]. Although the resistance proportion
of 18.6% found in the current study was higher than the ma-
jority of reports from elsewhere in Europe, the MIC distribu-
tion for azithromycin showed the majority of resistant isolates
had MICs of 1–2 mg/L (low-level resistance) and, in general,
most isolates had MICs falling in the narrow range of 0.125–
0.5 mg/L (73.6%) as previously reported [31].

Table 3 Summary of NG-MAST, MLSTand antimicrobial resistance determinants of sevenNeisseria gonorrhoeae isolates with high-level resistance
to azithromycin (MICs > 256 mg/L)

Isolate (year) NG-
MAST

MLST AZM MIC
(mg/L)

mtrR mtrR
promoter

23S rRNA erm A/B/C/F
ereA/B
mefA
mph A/B/C

006 (2013) 2475 1580 > 256 G45D A12C A2059G (4/4) –

196712 (2016) 649 1580 > 256 G45D WT A2059G (4/4) –

178487 (2015) 649 1580 > 256 G45D WT A2059G (3/4) –

199856 (2016) 649 1580 > 256 G45D WT A2059G (4/4) –

193852 (2016) 1443 1580 > 256 G45D A13 del A2059G (2/4) –

191587 (2016) 3311 1580 > 256 G45D WT A2059G (4/4) –

181798 (2015) 3311 1580 > 256 G45D WT A2059G (3/4) –

Table 4 Summary of NG-MAST, MLSTand antimicrobial resistance determinants of seven isolates displaying medium-level azithromycin resistance
(MICs = 4–32 mg/L)

Isolate (year) NG-
MAST

MLST AZM MIC
(mg/L)

mtrR mtrR promoter 23S rRNA erm A/B/C/F
ereA/B
mefA
mph A/B/C

67818 (2014) 2400 1587 6 D79N
T86A
H105K

A13 del C2611T (4/4) –

197747 (2016) 14449 7363 16 Stop codon A13 del C2611T (4/4) –

425657 (2016) 9184 7363 4 D79N
T86A
H105K

A13 del C2611T (4/4) –

178575 (2015) 2992 9363 32 A39T
R44H

WT C2611T (4/4) –

41277 (2014) 2992 9363 12 A39T
R44H

WT C2611T (4/4) –

179411 (2015) 12302 9363 4 D79N A13 del WT –

166587 (2016) 12302 9363 8 D79N A13 del WT –

Eur J Clin Microbiol Infect Dis



Of the azithromycin-resistant isolates found in this study, a
small proportion (n = 7, 1.1%) displayed high-level resistance
to azithromycin (MIC > 256 mg/L). However, this is a higher
proportion than reported in other countries or regions that fre-
quently examined larger numbers of isolates, such as 0 and
18% in China (n = 0/485, 2009–2013 and n = 21/118, 2011–
2012, respectively), 0.002% in the USA (n = 1/44,144, 2005–
2013), and 0.04–0.2% in Europe (n = 2/1902, n = 1/1994, n =
1/2151 and n = 5/2134 in 2011, 2013, 2014 and 2015, respec-
tively) and 0.7% in Canada (n = 2/2800, 2010–2013) [29–37].

In general, the recorded resistance rates to azithromycin
vary somewhat from country to country across the world
which is due to differences in true resistance rates but may
also reflect application of different resistance breakpoints and
that many circulating gonococcal strains have MICs close to
the resistance breakpoint. In this study, the proportion of iso-
lates resistant to azithromycin was higher than older reports

from elsewhere in Europe, including Amsterdam (1.2%;
2012–2015) and South-West Germany (7.1%; 2010–2015)
[31, 38], but was lower or similar to other countries such as
Switzerland (23.6%; 2009–2012) and Hungary (15.9%; 2013)
[39, 40]. The rate of azithromycin resistance found in the 2015
EURO-GASP surveillance is similar to the rates found in
South-West Germany, at 7.1% [30].

The major resistance determinant at which mutations are
known to decrease susceptibility to ESC MICs is the penA
gene and particularly the presence of a mosaic penA gene.
Two mosaic penA allele types were identified in this study
among the CRO-DS isolates and both these mosaic penA al-
leles are associated with decreased susceptibility to ESCs and
are prevalent worldwide [19, 41–45]. Most (n = 6) of the nine
CRO-DS isolates had the mosaic penA XXXIV allele. The
mosaic penA XXXIV has been shown to be associated with
increased ESCMICs [19, 41]. This is also the penA allele that
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has been associated with the majority of verified ESC treat-
ment failures [46–51]. Of the three remaining CRO-DS iso-
lates, two had the non-mosaic penA XIII (A501V) allele and
one had a mosaic penAX allele. The mosaic penAX allele has
also been associated with ESC resistance and treatment fail-
ures [19, 45, 52]. In 1995–2005 in Japan, 129/149 CFM-R
gonococcal isolates were shown to possess the mosaic penAX
alleles [45]. Non-mosaic penA XIII (containing the A501V
and P551S resistance mutations) was the most common allele
type in 56/95 isolates from Korea (2011–2013), which includ-
ed 21/25 of the ESC-resistant isolates [42].

Other mutations found to be associated with elevated ESC
MICs in this study included the additional ESC resistance
mutations G120K plus A121N/D/G alterations in PorB1b,
and an A deletion in the inverted repeated sequence of the
mtrR promoter. These mutations have been associated with
increased MICs to ESCs [39, 53–55].

N. gonorrhoeaeHLAzi-R is specifically associated with an
A2059Gmutation in the peptidyltransferase loop in domain V
in the 23S rRNA, when it is present in 3 or 4 alleles and this
has been reported worldwide [13, 14, 16–18, 35, 56, 57]. As
described in this study, seven of the 43 isolates sequenced
were HLAzi-R, one of which had an A2059G mutation in
only 2 out of the 4 23S rRNA gene alleles, the remaining
isolates had 3/4 (n = 2) or 4/4 (n = 4) mutated alleles.
HLAzi-R gonococcal isolates with only 2 alleles containing
the A2059G mutation have rarely been reported [58]. This
isolate also had a G45D alteration in mtrR that all the seven
HLAzi-R isolates had; however, it was the only HLAzi-R
isolate which also had an A deletion in the inverted repeat

sequence of the mtrR promoter. Of 25 internationally reported
HLAzi-R isolates, at least six had a G45D substitution inmtrR
and at least nine had an A deletion in the promoter region [13,
14, 16–18, 35, 56, 57, 59].

The 23S rRNA mutation C2611T found in the medium-
level azithromycin-resistant isolates in the current study has
been widely reported to be associated with resistance to
azithromycin, MICs ranging from 1 to 64 mg/L with the num-
ber of mutated alleles ranging from 1 to 4, but mostly three
copies have been associated with azithromycin MICs ≥ 4 mg/
L [13, 19, 35, 37, 57, 60–62]. One azithromycin-susceptible
isolate in the current study (AZMMIC = 0.125 mg/L) had one
C2611T mutated 23S rRNA allele, but there were other re-
ports of gonococcal isolates with one C2611T mutated allele,
associated with AZM MICs of 0.38, 1 and 2 mg/L [25, 62].
Grad et al. reported a positive predictive value of 99% for
decreased susceptibility to azithromycin if there were ≥ 2
C2611T mutated loci (C2611T), and interestingly, having
one C2611T mutated loci had the same negative predictive
value for decreased susceptibility to azithromycin as wild-
type 23S rRNA [63].

Given that A2059G (in ≥ 3 of the 4 alleles) and C2611T (in
≥ 3 of the 4 alleles) mutations in the 23S rRNA gene are only
found in gonococcal isolates with AZM MICs ≥ 4 mg/L, ab-
sence of these mutations may provide a means of assessing
whether azithromycin may be relied upon for treatment of
gonorrhoea if molecular methods are employed rather than
phenotypic susceptibility testing.

In the current study, the A deletion in the mtrR promoter
was present more often in gonococci with lower AZM MICs
than in those with higher MICs. In other studies, the presence
of this mtrR mutation region has been similar across all levels
of susceptibility to azithromycin [19, 37, 57]. No erm, ere,mef
or mph genes were detected in the current study, which is in
accordance with the majority of studies investigating
azithromycin resistance in N. gonorrhoeae.

The genomic analysis confirmed the most prevalent N.
gonorrhoeae strain types in our study. These included the
MLST ST1580, ST9396 and ST1901 lineages as well as the
genetic diversity within these genetic clades. Three novel
MLST STs were identified among the isolates tested
(ST13142, ST13143 and ST13144). Jacobsson et al. reported
NG-MAST ST2992 and MLST ST1901 to be the predomi-
nant STs out of 75 azithromycin-resistant (MIC > 2 mg/L)
isolates from 17 EURO-GASP countries (2009–2014) [57],
but in another genomic study examining a larger number of
consecutive European isolates from 20 countries in 2013 (n =
1054), NG-MAST ST1407 and MLST ST1901 were the pre-
dominant STs [19]. While significant genetic diversity was
seen, a number of closely related isolates were observed sug-
gesting putative transmission or shared environmental
sources, or, alternatively, the more recent emergence of these
strains in Ireland. This highlights the potential of whole-

Fig. 2 Whole-genome sequence comparison of Irish and UK high-level
azithromycin-resistant (HLAzi-R) ST1580 isolates. Irish and UK strains
are indicated in green and blue font respectively. Stars indicate putative
transmission events within specific clades based on observed SNP
differences of < 5 among isolates. While geographically contained clonal
clusters are observed, a single Irish isolate (193852) showed some
similarity with the UK outbreak strains, but differed significantly (> 100
SNPs)
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genome sequencing-based approaches to track disease trans-
mission at a finer and more accurate level.

While this was not the primary focus of the current study,
larger and more systematic application of whole-genome se-
quencing in Ireland could elucidate the emergence and spread
of N. gonorrhoeae strains at a national level. In terms of in-
ternational surveillance, the portability of whole-genome se-
quencing data and possibility for international comparison of
whole-genome sequencing data are also noteworthy [19]. In
the current study, we exploited this in the comparison of our
HLAzi-R MLST ST1580 isolates with those from an ongoing
outbreak in the UK. This highlighted the significant differ-
ences identified between the HLAzi-RMLST ST1580 isolates
in the current study and those of the UK outbreak. Thus,
genomic data can be integrated at scale to provide rapid com-
parisons of disparate databases toward greater international
surveillance of gonorrhoea. A more recent UK study reported
a sustained transmission of a clonal outbreak of HLAzi-R N.
gonorrhoeae over several years, the majority of isolates be-
longing to ST9768 which they stated may be a descendant of
ST649 [58]. This study also found that HLAzi-R may emerge
quite quickly from azithromycin-susceptible or low-level
azithromycin-resistant strains, making WGS essential for
identifying transmission events [58].

The limitations of the current study included that the iso-
lates were not representative of all gonococcal isolates cul-
tured in Ireland during the study time period (2014–2016),
as it was not possible to obtain isolates from all laboratories
in Ireland and some frozen isolates were not retrievable (n =
90). Similarly, because other tertiary hospitals referred isolates
to SJH, this may have led to an overrepresentation of
azithromycin resistance. Furthermore, epidemiological data
were mainly lacking and no information regarding sexual ori-
entation of the patient, mode of transmission or response to
antimicrobial treatment was available. Finally, the study was
limited by the small number of ESC-resistant gonococcal iso-
lates available and the small number of isolates that were
whole-genome sequenced.

This is the largest antimicrobial resistance study, linked to
whole-genome sequencing, of Irish N. gonorrhoeae isolates
performed to date and highlights the importance of continued
antimicrobial susceptibility surveillance and important advan-
tages and potential of whole-genome sequencing to be applied
at scale in the surveillance of antimicrobial-resistant strains of
N. gonorrhoeae, both locally and internationally.
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