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Abstract

Background

The origin and spread of tuberculosis (TB) in Tasmania and the types of strains of Mycobac-

terium tuberculosis complex (MTBC) present in the population are largely unknown.

Objective

The aim of this study was to perform the first genomic analysis of MTBC isolates from Tas-

mania to better understand the epidemiology of TB in the state.

Methods

Whole-genome sequencing was performed on cultured isolates of MTBC collected from

2014–2016. Single-locus variant analysis was applied to determine the phylogeny of the iso-

lates and the presence of drug-resistance mutations. The genomic data were then cross-ref-

erenced against public health surveillance records on each of the cases.

Results

We determined that 83.3% of TB cases in Tasmania from 2014–2016 occurred in non-Aus-

tralian born individuals. Two possible TB clusters were identified based on single locus vari-

ant analysis, one from November-December 2014 (n = 2), with the second from May-

August 2015 (n = 4). We report here the first known isolate of multi-drug resistant (MDR)

M. tuberculosis in Tasmania from 2016 for which we established its drug resistance muta-

tions and potential overseas origin. In addition, we characterised a case of M. bovis TB in a

Tasmanian-born person who presented in 2014, approximately 40 years after the last con-

firmed case in the state’s bovids.
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Conclusions

TB in Tasmania is predominantly of overseas origin with genotypically-unique drug-suscep-

tible isolates of M. tuberculosis. However, the state also exhibits features of TB that are

observed in other jurisdictions, namely, the clustering of cases, and drug resistance. Early

detection of TB and contact tracing, particularly of overseas-born cases, coordinated with

rapid laboratory drug-susceptibility testing and molecular typing, will be essential for Tasma-

nia to reach the World Health Organisation’s TB eradication goals for low-incidence

settings.

Introduction

There are few descriptions in the literature describing the epidemiology of tuberculosis (TB) in

Tasmania or the types of strains of Mycobacterium tuberculosis present in its population. Tas-

mania is a small island state in Australia with approximately 0.5 million people [1]. European

settlement of its capital, Hobart, began when it was founded as a penal colony in 1803 by Colo-

nel David Collins who came to Australia with the First Fleet in 1788. The earliest documented

evidence of TB in Tasmania comes from Collins who reported that among 36 ill people in his

Hobart settlement in 1804, one had consumption [2]. The first recorded deaths from TB in the

Tasmanian Aboriginal population occurred between 1835 and 1838 on Flinders Island, situ-

ated to the north east of the main Tasmanian island, where they had been relocated from 1830

[2]. The burden of TB in the state increased until reaching a peak of 248 cases in 1940 that cor-

responded to an incidence rate of 103.8/100,000 in Tasmania compared to the national inci-

dence rate of 59.3/100,000 in Australia at that time [3].

Today, Tasmania is considered a low TB-burden state with an incidence rate of 1.7/100,000

persons compared to 5.7/100,000 nationally in 2014 [4]. There are a number of features of TB

in the state that are of interest. Firstly, TB in Tasmania has been considered to consist of iso-

lated unique cases that have been imported from other jurisdictions. Secondly, the state has

been free of multi-drug resistant forms of TB. Thirdly, as part of the Brucellosis and Tubercu-

losis Eradication Campaign (BTEC) in Australia, bovine TB disease was eradicated from Tas-

manian cattle herds in 1975 thus, eliminating the primary source of human cases of M. bovis
TB in the state [5].

In this study, we performed an in-depth analysis of the types of MTBC strains isolated in

Tasmania between 2014 and 2016 using whole-genome sequencing. We then correlated geno-

mic information with public health surveillance data to better define the epidemiology of TB

in Tasmania.

Methods

Study design

Samples from 18 cultured isolates collected in Tasmania from 2014 to 2016, inclusive, were

available for this study. This represents 62.1% of total TB notifications that occurred during

this time period (n = 29) [6]. Diagnostic laboratory and clinical data were obtained from the

Royal Hobart Hospital, Launceston General Hospital, and the Victorian Infectious Diseases

Reference Laboratory (VIDRL). Samples were sent to the School of Medicine, University of

Tasmania, for next generation sequencing and whole-genome bioinformatics analysis. Ethics

approval for this study was obtained from the Tasmanian Health and Medical Human
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Research Ethics Committee (H0016214). A waiver of consent was acquired as the study was an

observational non-interventional analysis of MTBC isolates and de-identified data that were

obtained from routine laboratory testing.

Sample processing, culture, and drug susceptibility testing

Specimens from patients suspected of having tuberculosis were cultured using both solid

(Brown and Buckle agar, Löwenstein-Jensen agar) and liquid media (Mycobacterial Growth

Indicator Tubes (MGIT)) in accordance with standard protocols for mycobacterial growth [7].

Ziehl-Neelsen staining, TB MPT64 antigen test (Standard Diagnostics Bioline TB MPT64 anti-

gen test) and TB PCR (GenXpert, Cepheid) were performed on positive cultures. The isolates

were supplied to a reference laboratory for further characterisation. Drug-susceptibility testing

was performed using the MGIT system [7].

Genomic DNA isolation

1.5 mL of heat-inactivated mycobacterial cultures were centrifuged at 8,000 rpm for 3 minutes

at room temperature. The cell pellet was resuspended in 200 μL phosphate-buffered saline and

treated with 25 μL of 10 mg/mL lysozyme and incubated at 37˚C for 1 hour followed by 95˚C

for 15 minutes. 30 μL proteinase K (10 mg/mL) were added and the sample was incubated at

55˚C for 30 minutes. A Qiagen DNeasy Blood and Tissue kit was then used to extract myco-

bacterial genomic DNA as per the manufacturer’s instructions and the DNA was eluted with

200 μL of Buffer AE. 1 μL of RNase A (7000 units/mL, Qiagen) was added to 50 μL of genomic

DNA eluent and incubated at room temperature for 1 hour. The genomic DNA was further

purified using a High Pure PCR Template Preparation Kit as per the manufacturer’s instruc-

tions (Roche) and quantified using the Quant-iT Qubit™ dsDNA HS Assay Kit (Thermo Fisher

Scientific).

Whole genome sequencing and data analysis

Purified genomic DNA was tagged and amplified using a Nextera1 XT DNA Library Prepara-

tion Kit and Nextera1 XT Index Kit as per the manufacturer’s (Illumina) instructions. The

libraries generated were cleaned using Agencourt AMPure XP beads, normalized and then

pooled. The concentration of the pooled library was determined by qPCR using a KAPA

Library Quantification Kit. 15 pM of the pooled library were loaded into a MiSeq Reagent Kit

v2 cartridge and run on an Illumina MiSeq instrument generating paired-end reads of 150

base pairs (bp) (maximum). The fastq sequence files were collected and analysed using Gen-

eious software suite (R 9.5) [8]. Paired-end reads were trimmed (error probability limit of

0.05) and then mapped (random multiple base matches) to the publicly-available annotated

genome of M. tuberculosis reference strain H37Rv (accession number NC_000962.3) [9] using

a maximum variant p-value of 10−6 when exceeding 65% bias. Single-locus variations (SLV)

were called at a minimum variant frequency of 95% and a minimum mean genome coverage

of 20, and were annotated as previously described [10]. Mycobacterial lineage was predicted

with TB Profiler [11] and mutations associated with drug resistance were detected using the

PhyResSE database [12] followed by manual checking of the sequence. A maximum likelihood

phylogenetic inference tree was built in PhyML using the generalised time reversible (GTR)

substitution model [13].

Epidemiology of tuberculosis in Tasmania
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TB epidemiological analysis

A threshold of�5 single nucleotide polymorphisms (SNPs) between M. tuberculosis isolates

has previously been proposed as an indicator of recent TB transmission between patients,

while >12 SNP differences between isolates has been considered as evidence against recent

transmission [14–16]. SNP distances between TB isolates can be affected by factors such as

time between patient sampling, local TB incidence, and homogeneity of M. tuberculosis strains

in some regions [17, 18]. Therefore, for isolates that were within 5 SNP differences of one

another, additional epidemiological data were used. The definition of a possible cluster was

based on the National Tuberculosis Advisory Committee of Australia’s guidelines which state

that “A ‘possible cluster’ will be any 2 or more active cases with the same genotype as defined

by the method used where temporal and geospatial association is plausible but no direct epide-

miological link is identified” [19]. Each M. tuberculosis isolate in this work was characterised

based on SNP differences to other members of the same global lineage, and the presence of

spatiotemporal links between cases. Furthermore, in silico spoligotyping of the isolates was

performed using the Total Genotyping Solution for TB (TGS-TB) database [20] and compared

with published data on MTBC genotypes in the patient’s country/region of origin.

Results

Relative distribution of MTBC lineages in Tasmania

Cases were 72.2% male (n = 13), 27.8% female (n = 5) (Table 1). The age of patients at date of

specimen collection ranged from 3 months to 70 years of age with a mean age of 33.6 years.

77.7% (n = 14) of cases were pulmonary and 22.2 (n = 4) were extra-pulmonary. 83.3% of cases

(n = 15) were non-Australian born and 16.7% (n = 3) were Australian-born (Table 1).

Table 1. Demographic and specimen information for tuberculosis cases (n = 18) in Tasmania from 2014 to 2016. Demographic variables on the TB cases and speci-

men types were recorded. Cases were 72.2% male and 27.8% female. The mean TB patient age was 33.6 years (range 0–70 years).

Isolate Name Age Range of Patient (years) Specimen Type Year of Specimen Collection MTBC Lineage Patient Country of Origin

RHH2 20–39 Sputum 2015 1 Philippines

RHH3 �60 Sputum 2015 3 Nepal

RHH4 20–39 Sputum 2016 4 Thailand

RHH5 20–39 Paraspinal aspirate 2015 1 Myanmar/Malaysia

RHH6 20–39 Osteomyelitis 2014 3 Nepal

RHH7 40–59 Sputum 2014 4 New Zealand

RHH8 20–39 Sputum 2016 2 Malaysia

RHH9 <5 Gastric aspirate 2014 4 New Zealand

RHH10 20–39 Sputum 2016 3 Nepal

RHH11 40–59 Sputum 2015 3 Nepal

RHH12 <5 Gastric aspirate 2016 1 Philippines

RHH13 20–39 Sputum 2015 3 Nepal

RHH14 <5 Gastric aspirate 2015 3 Nepal

RHH15 �60 Sputum 2014 4 Australia

TTB1 �60 Urine 2016 M. bovis BCG Australia

TASMDR1 20–39 Tissue 2016 2 Vietnam

TTB3 20–39 Sputum 2016 1 Philippines

TASMB14 �60 Sputum 2014 M. bovis Australia

MTBC, Mycobacterium tuberculosis complex

https://doi.org/10.1371/journal.pone.0192351.t001
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Whole-genome sequence data were obtained for the 18 TB isolates analysed from 2014–

2016. The phylogenetic lineage of each isolate was determined using the PhyResSE and TB

Profiler databases [11, 12]. The most common lineage among the samples analysed was the

East-African Indian Lineage 3 (n = 6, 33.3%) followed by the Euro-American Lineage 4 (n = 4,

22.2%), Indo-Oceanic Lineage 1 (n = 4, 22.2%), and East-Asian Lineage 2 (n = 2, 11.1%) (Fig

1). In addition, cases of TB due to M. bovis (n = 1) and M. bovis BCG (n = 1) were recorded in

2014 and 2016, respectively.

Molecular epidemiological clustering of TB cases

A maximum likelihood phylogenetic inference tree generated using PhyML revealed grouping

of the different isolates into specific clades which were in agreement with the lineage analysis

performed using the PhyResSE and TB Profiler databases (Fig 2). In addition, the phylogenetic

tree revealed possible genetic clusters of isolates within Lineages 3 and 4.

The Lineage 3 cluster consisted of four isolates (RHH3, RHH11, RHH13, and RHH14)

which exhibited zero SLV differences with respect to one another. Based on the proposed

threshold of�5 SNPs, from Walker and others [14, 15], this is indicative of recent transmis-

sion. The isolates were collected in Tasmania from May to August 2015 from drug-susceptible

cases of pulmonary TB. The patients were household contacts and were originally from Nepal.

A previous analysis of 261 M. tuberculosis isolates collected in Nepal from pulmonary TB

patients between August 2009 and August 2010 using spoligotyping and real-time PCR analy-

sis of SNPs found that the most frequent M. tuberculosis lineage was Lineage 3 (40.6%) [21].

The in silico spoligotype of all four Tasmanian Lineage 3 cluster isolates matched Spoligotype

International Type 26 of the CAS1_Delhi spoligotyping family which was found to account for

approximately 50% of Lineage 3 M. tuberculosis isolates in the previous analysis of Nepal TB

cases (Fig 3) [21].

Fig 1. Relative frequency of Mycobacterium tuberculosis complex (n = 18) isolates in Tasmania from 2014 to 2016.

https://doi.org/10.1371/journal.pone.0192351.g001
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The Lineage 4 cluster comprised two isolates (RHH7 and RHH9) which exhibited zero SLV

differences with respect to one another. The isolates were collected in Tasmania from Novem-

ber to December 2014 from drug-susceptible cases of pulmonary TB. The patients were house-

hold contacts and were originally from New Zealand. From an earlier study involving 487

MTBC isolates collected in New Zealand from January 2010 to December 2011, the most prev-

alent lineage was Lineage 4 which made up 37.8% of TB cases in the general population and

70.5% of cases in the New Zealand-born population [23].

The remaining MTBC isolates (n = 12) were phylogenetically unique with respect to one

another with>50 SNP differences between them. The closest isolates from this group were iso-

lates TTB3 and RHH12 which differ by 74 single-locus variations and belong to Indo-Oceanic

Lineage 1. We do not have epidemiological evidence that these patients formed a probable

cluster. Both patients were originally from the Philippines where Lineage 1 is highly dominant

among TB isolates [24, 25].

Fig 2. Phylogenetic relationship of Mycobacterium tuberculosis complex isolates in Tasmania from 2014 to 2016. TASMB14 and TTB1 constitute

isolates of M. bovis and M. bovis BCG, respectively. The Gagneux lineage numbers are indicated for the other isolates. Lineage 2 isolate TASMDR1 is a

multi-drug resistant isolate of Mycobacterium tuberculosis. Lineage 3 isolates RHH3, 11, 13 and 14 are identical (zero SNP differences with respect to

one another) and form an epidemiological cluster as do Lineage 4 isolates RHH7 and RHH9. The phylogenetic tree was built using PhyML (Generalised

Time Reversible substitution model).

https://doi.org/10.1371/journal.pone.0192351.g002
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First confirmed case of MDR-TB in Tasmania

An overseas-born individual tested positive for TB infection in an Interferon Gamma Release

Assay (IGRA) test in 2016 but did not exhibit symptoms of TB, had a normal chest x-ray, and

was sputum culture negative. The patient presented with developed abdominal pain consistent

with colitis later in 2016 and a colon biopsy sample was subsequently taken. The colon tissue

specimen was smear-negative but culture-positive for Mycobacterium tuberculosis. MGIT

based drug-susceptibility testing performed on this extra-pulmonary isolate at VIDRL revealed

that it was resistant to isoniazid, rifampicin, ethambutol, pyrazinamide making it the first con-

firmed case of MDR-TB to have occurred in Tasmania. The isolate was recorded as sensitive to

ethionamide, amikacin, capreomycin, kanamycin, ofloxacin and moxifloxacin.

Genomic DNA of the Tasmanian MDR-TB isolate (TASMDR1) was sequenced on an Illu-

mina MiSeq. Paired-end reads were mapped to the M. tuberculosis H37Rv reference genome

by Burrows-Wheeler Alignment producing a mapped-read depth of 73.7-fold, covering

97.36% of the H37Rv genome. A consensus sequence was called using SAMtools generating a

4,320,496-bp draft assembly. With respect to reference H37Rv genome, 1,566 SLVs were

detected in the TASMDR1 assembled genome, of which 874 were non-synonymous. An analy-

sis was then performed to identify SLVs which correlated with phenotypic drug resistance.

The genome of TASMDR1 displayed single-nucleotide polymorphisms in genes correlating

Fig 3. Distribution of in silico generated spoligotypes across the culture-positive Tasmanian TB isolates analysed from 2014–2016. aThe in silico
derived spoligotype of the four Tasmanian Lineage 3 cluster isolates (RHH3, RHH11, RHH13, RHH14) and a fifth Lineage 3 isolate (RHH10) matched

Spoligotype International Type 26 of the CAS1_Delhi spoligotyping family which accounted for approximately 50% of Lineage 3 M. tuberculosis isolates

in Nepal in a previous analysis [21]. bThe in silico derived spoligotype of the M. bovis isolate (TASMB14) matches that of human M. bovis cases that were

reported in other Australian states/territories between 1977 and 1989 [22].

https://doi.org/10.1371/journal.pone.0192351.g003
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with antimicrobial drug resistance when analysed using the PhyResSE database [12]. These

included high confidence mutations in the genes katG (aGc/aCc, S315T) and rpoB (gAc/gGc,

D435G; tCg/tTg, S450L) which are associated with M. tuberculosis resistance to isoniazid and

rifampicin, respectively [26–28] (Table 2).

Further mutations were detected in the embB (Atg/Gtg, M306V) and pncA (cCg/cTg, P62L)

genes that underlie resistance to ethambutol and pyrazinamide, respectively [29–32] (Table 2).

In addition, an additional A/C substitution was detected at position 514 of the 16S rRNA

gene, rrs (MTB000019) that is associated with streptomycin resistance [33, 34] (Table 2). The

TASMDR1 isolate was predicted to belong to East Asian Lineage 2, sub-lineage Beijing, by the

PhyResSE and TB Profiler databases [11, 12]. Furthermore, the isolate exhibited a polymor-

phism in the mutT2 gene (Gga/Cga, G58R) which is associated with so-called ‘Modern’ Beijing

strains [35, 36]. The patient was originally from Viet Nam and had known household contact

with an active case of TB that was confirmed in Viet Nam in 2012. The isolate from this 2012

case was recorded as resistant to isoniazid, rifampicin, ethambutol, pyrazinamide and strepto-

mycin from MGIT based drug-susceptibility testing.

Case of M. bovis TB in Tasmania

Isolate TASMB14 was collected in Tasmania in 2014 from a sputum specimen taken from a

drug-susceptible case of pulmonary TB in an Australian-born person. Risk factors associated

with this case included age (�70 years) and chronic obstructive pulmonary disease co-morbid-

ity. The genome sequence of the isolate revealed that it contains the Rv2043c (pncA) polymor-

phism, Cac/Gac, H57D, and the RD1 region genes Rv3871 to Rv3879c, confirming it as M.

bovis. The in silico derived spoligotype of TASMB14 matches that of other human M. bovis
cases that were reported elsewhere in Australia between 1977 and 1989 [22] (Fig 3).

Discussion

In this study, we provide the first in-depth analysis of the molecular epidemiology of tubercu-

losis in Tasmania. MTBC isolates collected from culture-positive cases of TB in Tasmania

from 2014 to 2016, were examined. The most common lineage detected among the Tasmanian

samples analysed was the East-African Indian Lineage 3 (33.3%) followed by the Euro-Ameri-

can Lineage 4 (22.2%), Indo-Oceanic Lineage 1 (22.2%), and the East-Asian Lineage 2 (11.1%)

(Fig 1). Individual cases of TB due to M. bovis and M. bovis BCG were notified in 2014 and

2016, respectively.

Our whole-genome sequence analyses identified two possible clusters of M. tuberculosis
among the Tasmanian cases, one belonging to Lineage 3 and the other belonging to Lineage 4.

The Lineage 3 cluster, consisted of four isolates separated by zero SLVs which is indicative of

recent transmission between the patients based on previously-established SNP thresholds [14,

Table 2. Mutations detected in the genome of the TASMDR1 isolate that confer resistance to anti-tubercular drugs. Six mutations that have been associated with

anti-tubercular drug resistance were identified. The mutations listed in the rpoB, katG, pncA, and embB genes were classified as high confidence SNPs with respect to resis-

tance to rifampicin, isoniazid, pyrazinamide and ethambutol, respectively, by the PhyResSE database [12]. In addition, an A/C substitution was detected at position 514 of

the 16S rRNA gene, rrs (MTB000019) that is associated with streptomycin resistance [33, 34].

Drug Gene Locus Tag Mutation Genome Location Substitution

Rifampicin rpoB Rv0667 gAc / gGc, tCg /tTg 761110, 761155 D435G, S450L

Isoniazid katG Rv1908c aGc / aCc 2155168 S315T

Pyrazinamide pncA Rv2043c cCg / cTg 2289057 P62L

Ethambutol embB Rv3795 Atg / Gtg 4247429 M306V

Streptomycin rrs MTB000019 A / C 1472359 a514c

https://doi.org/10.1371/journal.pone.0192351.t002
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15]. The isolates were collected within a three-month period from household contacts who

originated from Nepal. The in silico generated spoligotype of the four Lineage 3 cluster isolates

matches Spoligotype International Type 26 of the CAS1_Delhi spoligotyping family. This par-

ticular spoligotype was common among TB cases in Nepal, constituting approximately 50% of

Lineage 3 isolates, and 20% of total TB isolates, in an earlier study (Fig 3) [21].

In this work, we describe the first documented case of MDR-TB in Tasmania. This case was

detected in the second half of 2016 in an overseas-born individual who had earlier moved

from Viet Nam to Tasmania. The isolate, TASMDR1, which belongs to the East-Asian Lineage

2, was confirmed as being resistant to isoniazid, rifampicin, ethambutol and pyrazinamide in

phenotypic drug-susceptibility testing. Furthermore, genome sequencing identified an a514c

mutation in the rrs locus (MTB000019) that is associated with streptomycin resistance. A

household contact of the patient had been diagnosed with pulmonary MDR-TB in Viet Nam

in 2012. The isolate from this 2012 case was recorded as resistant to isoniazid, rifampicin, eth-

ambutol, pyrazinamide, and streptomycin in MGIT culture-based drug-susceptibility testing.

Based on the equivalent drug-resistance profiles of the two MDR-TB cases, it is likely that the

Tasmanian case contracted the MDR strain of M. tuberculosis from the household contact

some time previously and that the infection remained latent until reactivating as extrapulmon-

ary MDR-TB in 2016. A recent study by Fox and colleagues conducted in Viet Nam found that

household contacts of patients with MDR-TB have a higher risk of becoming tuberculin-skin

test positive and of developing active TB compared to contacts of drug-susceptible TB [37].

While the proportion of TB cases in Australia that are MDR is currently under 2% (22

MDR-TB cases out of 1,263 TB notifications in 2013), the estimated costs associated with treat-

ing a case of TB increase substantially when going from drug-susceptible TB (USD$17,000 in

the USA, €10,282 in 15 EU countries, per case) to multi-drug resistant TB (USD$134,000 in

the USA, €57,213 in 15 EU countries, per case) [38, 39]. It was previously estimated that man-

agement of one case of extensively drug-resistant (XDR) TB in 2012 cost Queensland Health

in the region of AUD $500,000 [40]. Hence, vigilance will need to be maintained with respect

to the tracing of contacts of previous TB cases, especially MDR-TB cases, and the early detec-

tion of drug resistance in Tasmanian isolates.

Human TB caused by M. bovis was reported in Tasmania in 2014, nearly 40 years after the

last confirmed case of bovine TB in the state in 1975 [5]. The pulmonary form of disease was

diagnosed in a male aged�70 years. The source of this infection is unknown but a possibility

is reactivation of a latent M. bovis infection acquired during earlier rural exposure to M. bovis
prior to the elimination of bovine TB disease in Tasmania. The in silico derived spoligotype of

the isolate, TASMB14, matches that of previously-described human M. bovis cases that were

reported in other Australian states and territories between 1977 and 1989 [22] (Fig 3). As

noted in 1999 by Cousins et al., “because of the usual long incubation periods that can occur

between infection and development of disease, and because of the possibility of disease reacti-

vation, especially in elderly or immunocompromised patients, human tuberculosis caused by

M. bovis is likely to continue to be diagnosed for many years to come” [41].

In the majority of the Tasmanian cases analysed from 2014 to 2016, 83.3% of patients

(n = 15) were born overseas. This corresponds with 89.2% and 87.6% of TB notifications

nationally recorded in the overseas-born population in 2012 and 2013, respectively [42]. A

number of European studies have found that immigrants are not a major source of TB infec-

tion for the native-born population [43, 44]. Sandgren and colleagues in their systematic

review concluded, that “TB in a foreign-born population does not have a significant influence

on TB in the native population in EU/EEA” [45]. In our study, we did not find evidence of

transmission of TB from the overseas-born cases to the Australian-born population. Neverthe-

less, targets have been set for low incidence jurisdictions by the World Health Organisation for
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the pre-elimination of TB by 2035 (defined as<10 TB cases per million population), and the

elimination of TB by 2050 (<1 TB case per million population) [46]. The incidence rate of TB

in Tasmania currently sits at approximately 16 per million population (1.6/100,000) [42].

Hence, a 60% drop in TB cases by 2035, and a 95% drop in TB cases by 2050 are required in

Tasmania for the state to meet international targets.

A common trend seen in low TB burden countries is decreasing TB in the native-born pop-

ulation and increasing TB in the migrant population as a proportion of total cases [47]. There-

fore, bringing TB rates into line with the World Health Organisation’s goals will require efforts

to reduce TB incidence in the foreign-born population. A major emphasis in Australia is

placed upon pre-immigration screening. Visa applicants who are 11 years or older must

undergo a chest x-ray and potentially, other diagnostic tests. If active TB is found, Australian

law does not permit the granting of a visa until the applicant has completed treatment and has

been declared free of active TB [48]. Pre-entry screening of foreign-born individuals is not spe-

cifically designed for the detection of latent tuberculosis infection (LTBI). However, most TB

cases among the foreign-born population in industrialised countries are believed to be due to

reactivation of LTBI rather than continuation of an existing case of active TB [49, 50]. In addi-

tion, molecular epidemiological studies have found a strong association between the lineage of

the MTBC strain isolated from a migrant patient and the predominant lineage found in their

region of origin [23–25]. In our study, all Lineage 3 (Central Asian (CAS)/Delhi) cases were in

individuals from the Indian sub-continent where this lineage is prevalent [51]. It is probable

that a number of the overseas-born patients who presented with TB in Tasmania had acquired

M. tuberculosis infection prior to their arrival in the state or in Australia. Therefore, further

consideration will need to be given to the management of TB in the migrant population in Tas-

mania in order to reduce the incidence of the disease in the state.

Conclusions

In summary, our work provides the first extensive analysis of the molecular epidemiology of

tuberculosis in Tasmania. It identified the presence of two phylogenetic clusters of identical

isolates of M. tuberculosis which is indicative of recent transmission of TB among household

contacts. In addition, it established the genetic basis of the resistance exhibited by Tasmania’s

first confirmed case of MDR-TB. Our study highlights that while the incidence of TB in Tas-

mania is comparatively low, challenges remain with regard to the management of the disease

in the migrant population, particularly from high TB prevalence countries, which will need to

be overcome for the state to meet the World Health Organisation’s 2035 and 2050 TB eradica-

tion goals.
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Funding acquisition: Louise A. Cooley, Ronan F. O’Toole.

Investigation: Louise A. Cooley, Greg Haug, Janet A. Fyfe, Maria Globan, Ronan F. O’Toole.

Methodology: Sanjay S. Gautam, Micheál Mac Aogáin.
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